Three Methods for Phase I/II Clinical Trials, with Application to Allogeneic Stem Cell Transplantation

Peter F. Thall, PhD

Biostatistics Department M.D. Anderson Cancer Center

Workshop on Clinical Trial Endpoints for Acute Graftvs-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation

May 19, 2009

Financial Conflicts of Interest

• None

Standard "3+3" Phase I Designs for Oncology

- Objective: Identify the maximum tolerated dose (MTD)
- MTD defined by algorithm: *Implicitly* either 17% or 33% grades 3-5 AE
- But the incidence of grade 3 AEs far exceeds 17-33% for BMT patients, so this design is rarely applicable for this population of patients
- Well known to have inferior properties compared to Bayesian adaptive designs

Three Phase I and Phase I-II Designs

Treatment Optimized	Outcome	Decision Criterion	Example
Dose	Bivariate binary (phase I-II)	Efficacy- toxicity trade-offs	GVHD prophylaxis, anergized cells post allotx, etc.
Dose and Schedule	Time to toxicity (phase I)	Pr(toxicity by day t*)	Azacitidine post allotx
Doses of two agents	Bivariate ordinal	Utility of outcome	Bladder cancer
$(dose_1, dose_2)$	(phase I-II)		

All methods are

Bayesian : Model parameters are considered to be RANDOM quantities

Sequentially Outcome Adaptive : Choose a treatment (dose, dose-schedule, dose pair) → Treat a cohort of patients → Observe the patients' outcomes

Repeat until a stopping rule says "Stop"

Three Phase I and Phase I-II Designs

Treatment Optimized	Outcome	Decision Criterion	Example
Dose	Bivariate binary (phase I-II)	Efficacy- toxicity trade-offs	GVHD prophylaxis, anergized cells post allotx, etc.
Dose and Schedule	Time to toxicity (phase I)	Pr(toxicity by day t*)	Azacitidine post allotx
Doses of	Bivariate	Utility of	Bladder
two agents	ordinal	outcome	cancer
$(dose_1, dose_2)$	(phase I-II)		

Dose-Finding Based On Efficacy-Toxicity Trade-Offs (Thall and Cook, 2004; Thall, Cook and Estey, 2006)

Patient Outcome = {Efficacy, Toxicity} - each a binary indicator $\pi_{E}(x) = \Pr(Efficacy \text{ at dose } = x)$ $\pi_{T}(x) = \Pr(Toxicity \text{ at dose } = x)$

MD must specify:

- → A Lower Limit on $\pi_{E}(x)$ (minimum response of interest)
- → An Upper Limit on $\pi_{T}(x)$ (maximum acceptable toxicity)
- → Three or more equally desirable (π_{E}, π_{T}) targets...

Two Dose Acceptability Criteria

Efficacy Cop

Toxicity Cop

Target pairs are used to construct an Efficacy-Toxicity Trade-off Contour...

and a family of Contours each with desirability, δ , for the (π_E , π_T) pair

Which of these two π pairs is more desirable?

Trial Conduct

- 1) The physician chooses the starting dose
- 2) A dose is Acceptable if either
 - a) it has acceptable $\pi_{\mathsf{E}} \& \pi_{\mathsf{T}}$ or
 - b) it is the lowest untried dose and has acceptable π_T
- 3) Treat each cohort at the current most desirable dose
 - a) The dose chosen for the next cohort may be *higher than, the same as, or lower than* the current dose
 - *b)* After de-escalation due to excessive toxicity or low efficacy, if subsequent outcomes at a lower dose are sufficiently safe and efficacious, then the algorithm may re-escalate
- 4) Do not skip untried doses
- 5) No dose acceptable → Stop the trial
- 6) At the end, select the most desirable dose

Pentostatin for Graft-Versus-Host Disease

Patients with steroid-refractory GVHD after allotx from an HLA-matched donor Doses : $x = .25, .50, .75, \text{ or } 1.00 \text{ mg/m}^2$ $N_{max} = 36, \text{ cohort size} = 3$ First cohort treated at .25 mg/m²

Toxicity = {Infection unresolved by antibiotics, or death, within 2 weeks}

Efficacy = { > 1 grade drop in GVHD severity, within 2 weeks}

.40 = Upper Limit on $\pi_T(x)$

.20 = Lower Limit on $\pi_{E}(x)$

Simulation Scenarios for the Pentostatin Trial

Conclusions

The Trade-Off-Based Algorithm reliably

- 1) Finds Safe Doses having High Efficacy
- 2) Stops if no dose is acceptable

Implementation is Hard Work, but a free computer program is available!

Three Phase I and Phase I-II Designs

Treatment Optimized	Outcome	Decision Criterion	Example
Dose	Bivariate binary (phase I-II)	Efficacy- toxicity trade-offs	GVHD prophylaxis, anergized cells post allotx, etc.
Dose and Schedule	Time to toxicity (phase I)	Pr(toxicity by day t*)	Azacitidine post allotx
Doses of	Bivariate	Utility of	Bladder
two agents	ordinal	outcome	cancer
$(dose_1, dose_2)$	(phase I-II)		

Optimizing Dose and Schedule Based On Time to Toxicity Braun, Thall, Nguyen, deLima *Clinical Trials*, 2007

<u>Goal</u>: Optimize (Dose, Schedule) based on Time to Toxicity

Vidaza® (azacitidine) given post allotx in AML pts

- Dose-toxicity profile of Vidaza[®] unknown
- Cumulative toxicity of repeated administration (multiple 28-day cycles) unknown

Patient Outcome

- T = Time from the start of treatment to toxicity
- Usual "time-to-event" data, as in a survival time analysis. A patient's outcome consists of

a) *Time to toxicity* if it occurred, or *Time to last follow up* if toxicity has *not* occurred

b) An indicator of whether toxicity has occurred

- Why is "time-to-event" better than a binary outcome? Using a usual binary (Yes / No) indicator of ["Toxicity" within 28 days from the start of therapy]
 - A patient with toxicity at day 27 is scored "Yes"
 - A patient with toxicity at day 29 is scored "No"
 - A patient followed for only 25 days w/o toxicity is inevaluable and *cannot be scored*

Trial Conduct

- 1) Treat 1st patient at the lowest (dose, schedule)
- 2) Using current **Time-to-Toxicity data**, treat each patient at the (dose, schedule) pair with **ptox** = Pr(Toxicity by day t* | dose, schedule) closest to the target max toxicity rate
- 3) Do not "skip" untried (dose, schedule) pairs
- 4) If no (dose, schedule) pair is acceptable \rightarrow Stop the trial

What Actually Happened in the Vidaza[®] Trial?

- Treatment parameters
 - Vidaza doses 8, 16 or 24 mg/m² daily x 5 in each cycle
 - Given for 1, 2, 3 or 4 28-day cycles
- Definition of toxicity
 - Severe (NCI grade 3 or 4) kidney, liver, heart, lung or neural toxicity
 - Severe GVHD
 - Systemic infection not resolved by antibiotics within two weeks
 - Severe haematologic toxicity
- ptox = Pr(Toxicity by day 116 | dose, schedule) closest to the tox target 0.3
- Only 1 toxicity in 27 patients, so 4 more dose levels 32,40,48,56 added
- Optimal dose-schedule identified after 44 patients:

(40 mg/m² x 3 cycles)

After N=33 patients

Conclusions

The Dose-Schedule Algorithm reliably

1) Finds (Dose, Schedule) pairs having specified Pr(Toxicity by day t*)

2) Stops if no (Dose, Schedule) is acceptable

Implementation is Hard Work, but a free computer program is available!

Three Phase I and Phase I-II Designs

Treatment Optimized	Outcome	Decision Criterion	Example
Dose	Bivariate binary (phase I-II)	Efficacy- toxicity trade-offs	GVHD prophylaxis, anergized cells post allotx, etc.
Dose and Schedule	Time to toxicity (phase I)	Pr(toxicity by day t*)	Azacitidine post allotx
Doses of two agents (dose ₁ , dose ₂₎	Bivariate ordinal (phase I-II)	Utility of outcome	Bladder cancer

Optimizing the dose pair of a two-agent combination based on elicited utilities of (Toxicity,Efficacy) outcomes

Houede, Thall, Nguyen, Paoletti and Kramar. *Biometrics*, In press

<u>Goal</u>: Optimize (Dose of 2 agents) based on Toxicity and Efficacy

Treatment of bladder cancer with a combination of chemotherapy (c) and a biologic (b) where optimal doses in combination are unknown

Dose-Combination (b_x, c_y) Matrix

	(1,3)	(2,3)	(3,3)	(4,3)
↑ <i>C</i> _Y	(1,2)	(2,2)	(3,2)	(4,2)
	(1,1)	(2,1)	(3,1)	(4,1)
	(1,1)	(2,1)	(3,1)	(4,1)

$$b_x \rightarrow$$

 b_x = dose of biologic agent

 c_{γ} = dose of chemo agent

Patient Outcome is (Response, Toxicity)

Response

		0 = PD	1 = SD	2 = CR/PR	
ť	0	(0, 0)	(0, 1)	(0, 2)	_
oxici	1	(1, 0)	(1, 1)	(1, 2)	_
Ĕ	2	(2, 0)	(2, 1)	(2, 2)	(2, Ineval)
		Allows	the possi	bility that Re	sponse
			may be		

Elicited Consensus Utilities

Response

	PD	SD	CR/PR	Inevaluable
ity	25	76	100	_
Toxic	10	60	82	_
-	2	40	52	0

Very Flexible Dose-Outcome Model

Trial Conduct

Choose each cohort's dose pair to *Maximize the Posterior Expected Utility* based on the data observed so far

Do Not Skip Untried Doses:

If (b_1, c_1) is the current dose pair, then escalation is allowed to as yet untried pairs (b_2, c_1) , (b_1, c_2) , or (b_2, c_2)

Stop the trial if all dose pairs are unacceptably toxic

Scenario 1

Application to Trials Monitoring GVHD

- Toxicity = 0 if NO GVHD 1 if grade 1,2 GVHD 2 if grade 3,4 GVHD
- or
- 0 if NO grade 3,4 GVHD
- 1 if grade 3,4 GVHD but resolved in <2 wks
- 2 if grade 3,4 GVHD not resolved in < 2 wks

Application to Trials Monitoring GVHD

Efficacy =

- 0 if dead, or alive but no response at day 100
- 1 if alive and engrafted with PR at day 100
- 2 if alive and engrafted with CR at day 100 (e.g. for CLL transplantation trials)

or

- 0 if dead, or no plt recovery in 100 days
- 1 if alive with 20 < plt < 50 at day 100
- 2 if alive with plt>50 by day 100(e.g. for cord blood transplantation trials)

Extensive Computer Simulations Show that the Utility-Based Dose-Finding Method is

Very Reliable and Very Safe

Implementation is Hard Work, but a free computer program is available!

Phase I and I/II Designs for GVHD Trials

Design	Objective	Comments
3+3	MTD	Easy to do, poor properties, rarely applicable to BMT patients
Accelerated titration	MTD	Acceptable for relatively nontoxic agents, but rarely applicable (like 3+3)
CRM, mCRM	MTD	Stat-intensive, flexible for toxicity target, find dose based on toxicity
Time-To-Tox	Max tolerated dose and schedule combo	Stat-intensive, flexible for toxicity target, finds dose and schedule
Eff-Tox	Best dose based on toxicity and efficacy	Stat-intensive, optimizes efficacy and toxicity jointly
Doublet Studies	Best combo based on toxicity and efficacy	Stat-intensive, optimizes efficacy and toxicity jointly

References

- Thall PF, Cook JD. Dose-finding based on efficacy-toxicity trade-offs. *Biometrics*, 60:684-693, 2004.
- Braun TM, Yuan Z, Thall PF. Determining a maximum tolerated schedule of a cytotoxic agent. *Biometrics*, 61:335-343, 2005.
- Thall PF, Cook JD, Estey EH. Adaptive dose selection using efficacytoxicity trade-offs: illustrations and practical considerations. *J Biopharmaceutical Stat*. 16:623-638, 2006.
- Braun TM, Thall PF, Nguyen H, de Lima M. Simultaneously optimizing dose and schedule of a new cytotoxic agent. *Clinical Trials*, 4:113-124, 2007
- Houede H, Thall PF, Nguyen H, Paoletti X, Kramar A. Utility-based optimization of combination therapy using ordinal toxicity and efficacy in phase I/II trials, 2009. To appear in *Biometrics*

Software at: http://biostatistics.mdanderson.org/SoftwareDownload